A method of computing income tax using an integral of the Sigmoid Function.
Some definitions:

$$
\begin{array}{ll}
r_{t} \in[0,1] & =\text { the top tax rate } \\
r_{b} \in[0,1] & =\text { the bottom tax rate }
\end{array}
$$

where:

\[

\]

where:
r_{t}, r_{b}, i, m and z are parameters set by the taxing entity (a national government, for example).
Now, we map x into the domain of the Sigmoid Function:

$$
\begin{equation*}
y=z-(z / i) x \tag{1}
\end{equation*}
$$

and:

$$
\begin{equation*}
S(y)=\frac{1}{1+e^{-y}} \tag{theSigmoidFunction}
\end{equation*}
$$

and:

$$
\begin{equation*}
A(y)=\int S(y) d y=\log \left(1+e^{y}\right)+C \tag{3}
\end{equation*}
$$

where:

$$
C=-\log \left(1+e^{z}\right)
$$

and, since it, along with C , only changes when taxing entity parameters change, let's define a factor to map $A(y)$ back into "income space":

$$
f=\left(r_{t}-r_{b}\right)(i /-z)
$$

which yields the Universal Progressive Income Tax Equation:

$$
\begin{equation*}
T(x) \quad=\left(\log \left(1+e^{y}\right)+C\right) f+r_{b} x-m \tag{4}
\end{equation*}
$$

Some characteristics:

$$
\begin{array}{ll}
r_{e} & =T(x) / x, \text { for } x \neq 0 \\
\lim _{z \rightarrow-\infty} S & =\text { a step function } \\
\lim _{z \rightarrow 0} S(y) & =0.5 \\
\lim _{r_{b} \rightarrow r_{t}} T & =\text { the Flat Tax, often pitched to the poor by the Disingenuous Rich as "tax code simplification". }
\end{array}
$$

A nice additional consequence of continuous-function progressive taxation is the flattening of the business cycle; any drop in aggregate demand is automatically corrected by perfectly targeted tax relief for the affected consumers.

